Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 928
Filtrar
1.
Biomed Pharmacother ; 173: 116319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422654

RESUMO

BACKGROUND: Effects of Dictamnus dasycarpus Turcz. on allergic asthma and their underlying mechanisms remain unclarified. Thus, we investigated the effects of D. dasycarpus Turcz. water extract (DDW) on mucus hypersecretion in mice with ovalbumin (OVA)-induced asthma and human bronchial epithelial cells. METHODS: BALB/c mice were used to establish an OVA-induced allergic asthma model. Mice were grouped into the OVA sensitization/challenge, 100 and 300 mg/kg DDW treatment, and dexamethasone groups. In mice, cell counts in bronchoalveolar lavage fluid (BALF), serum and BALF analyses, and histopathological lung tissue analyses were performed. Furthermore, we confirmed the basic mechanism in interleukin (IL)-4/IL-13-treated human bronchial epithelial cells through western blotting. RESULTS: In OVA-induced asthma mice, DDW treatment reduced inflammatory cell number and airway hyperresponsiveness and ameliorated histological changes (immune cell infiltration, mucus secretion, and collagen deposition) in lung tissues and serum total immunoglobulin E levels. DDW treatment lowered BALF IL-4, IL-5, and IL-13 levels; reduced levels of inflammatory mediators, such as thymus- and activation-regulated chemokine, macrophage-derived chemokine, and interferon gamma-induced protein; decreased mucin 5AC (MUC5AC) production; decreased signal transducer and activator of transcription (STAT) 6 and STAT3 expression; and restored forkhead box protein A2 (FOXA2) expression. In IL-4/IL-13-treated human bronchial epithelial cells, DDW treatment inhibited MUC5AC production, suppressed STAT6 and STAT3 expression (related to mucus hypersecretion), and increased FOXA2 expression. CONCLUSIONS: DDW treatment modulates MUC5AC expression and mucus hypersecretion by downregulating STAT6 and STAT3 expression and upregulating FOXA2 expression. These findings provide a novel approach to manage mucus hypersecretion in asthma using DDW.


Assuntos
Asma , Dictamnus , Fator 3-beta Nuclear de Hepatócito , Fator de Transcrição STAT3 , Camundongos , Humanos , Animais , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Ovalbumina , Modelos Animais de Doenças , Asma/induzido quimicamente , Asma/tratamento farmacológico , Pulmão , Inflamação/metabolismo , Muco/metabolismo , Líquido da Lavagem Broncoalveolar , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Fator de Transcrição STAT6/metabolismo
2.
Cell Mol Life Sci ; 81(1): 50, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252148

RESUMO

Pancreatic neuroendocrine neoplasms (PanNENs) are a group of highly heterogeneous neoplasms originating from the endocrine islet cells of the pancreas with characteristic neuroendocrine differentiation, more than 60% of which represent metastases when diagnosis, causing major tumor-related death. Metabolic alterations have been recognized as one of the hallmarks of tumor metastasis, providing attractive therapeutic targets. However, little is known about the molecular mechanism of metabolic changes regulating PanNEN progression. In this study, we first identified methylmalonic acid (MMA) as an oncometabolite for PanNEN progression, based on serum metabolomics of metastatic PanNEN compared with non-metastatic PanNEN patients. One of the key findings was the potentially novel mechanism of epithelial-mesenchymal transition (EMT) triggered by MMA. Inhibin ßA (INHBA) was characterized as a key regulator of MMA-induced PanNEN progression according to transcriptomic analysis, which has been validated in vitro and in vivo. Mechanistically, INHBA was activated by FOXA2, a neuroendocrine (NE) specific transcription factor, which was initiated during MMA-induced progression. In addition, MMA-induced INHBA upregulation activated downstream MITF to regulate EMT-related genes in PanNEN cells. Collectively, these data suggest that activation of INHBA via FOXA2 promotes MITF-mediated EMT during MMA inducing PanNEN progression, which puts forward a novel therapeutic target for PanNENs.


Assuntos
Fator 3-beta Nuclear de Hepatócito , Subunidades beta de Inibinas , Ácido Metilmalônico , Neoplasias Pancreáticas , Humanos , Fator 3-beta Nuclear de Hepatócito/genética , Subunidades beta de Inibinas/genética , Pâncreas , Neoplasias Pancreáticas/genética , Ativação Transcricional
3.
Biol Reprod ; 110(2): 246-260, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37944068

RESUMO

Uterine glands and their secretions are crucial for conceptus survival and implantation in rodents and humans. In mice, the development of uterine gland known as adenogenesis occurs after birth, whereas the adenogenesis in humans initiates from fetal life and completed at puberty. Uterine adenogenesis involves dynamic epithelial cell proliferation, differentiation, and apoptosis. However, it is largely unexplored about the mechanisms governing adenogenesis. CK1α plays important roles in regulating cell division, differentiation, and death, but it is unknown whether CK1α affects adenogenesis. In the current study, uterus-specific CK1α knockout female mice (Csnk1a1d/d) were infertile resulted from lack of uterine glands. Subsequent analysis revealed that CK1α deletion induced massive apoptosis in uterine epithelium by activating GSK3ß, which was confirmed by injections of GSK3ß inhibitor SB216763 to Csnk1a1d/d females, and the co-treatment of SB216763 and CK1 inhibitor d4476 on cultured epithelial cells. Another important finding was that our results revealed CK1α deficiency activated p53, which then blocked the expression of Foxa2, an important factor for glandular epithelium development and function. This was confirmed by that Foxa2 expression level was elevated in p53 inhibitor pifithrin-α injected Csnk1a1d/d mouse uterus and in vitro dual-luciferase reporter assay between p53 and Foxa2. Collectively, these studies reveal that CK1α is a novel factor regulating uterine adenogenesis by inhibiting epithelial cell apoptosis through GSK3ß pathway and regulating Foxa2 expression through p53 pathway. Uncovering the mechanisms of uterine adenogenesis is expected to improve pregnancy success in humans and other mammals.


Assuntos
Indóis , Maleimidas , Proteína Supressora de Tumor p53 , Útero , Gravidez , Animais , Feminino , Camundongos , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Útero/metabolismo , Apoptose , Células Epiteliais/metabolismo , Camundongos Knockout , Mamíferos/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
4.
Cell Mol Gastroenterol Hepatol ; 17(2): 237-249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37879405

RESUMO

BACKGROUND & AIMS: Transcription factors regulate gene expression that orchestrates liver physiology. Many bind at distal enhancers and chromatin looping is required to activate their targets. Chromatin architecture has been linked to essential functions of the liver, including metabolism and sexually dimorphic gene expression. We have previously shown that pioneer factor Foxa2 opens chromatin for binding of nuclear receptors farnesoid X receptor (FXR) and liver X receptor-α during acute ligand activation. FXR is activated by bile acids and deletion of Foxa2 in the liver results in intrahepatic cholestasis. We hypothesized that Foxa2 also enables chromatin conformational changes during ligand activation and performed genome-wide studies to test this hypothesis. METHODS: We performed Foxa2 HiChIP (Hi-C and ChIP) to assess Foxa2-dependent long-range interactions in mouse livers treated with either vehicle control or FXR agonist GW4064. RESULTS: HiChIP contact analysis shows that global chromatin interactions are dramatically increased during FXR activation. Ligand-treated livers exhibit extensive redistribution of topological associated domains and substantial increase in Foxa2-anchored loops, suggesting Foxa2 is involved in dynamic chromatin conformational changes. We demonstrate that chromatin conformation, including genome-wide interactions, topological associated domains, and intrachromosomal and interchromosomal Foxa2-anchored loops, drastically changes on addition of FXR agonist. Additional Foxa2 binding in ligand-activated state leads to formation of Foxa2-anchored loops, leading to distal interactions and activation of gene expression of FXR targets. CONCLUSIONS: Ligand activation of FXR, and likely of related receptors, requires global changes in chromatin architecture. We determine a novel role for Foxa2 in enabling these conformational changes, extending its function in bile acid metabolism.


Assuntos
Ácidos e Sais Biliares , Cromatina , Camundongos , Animais , Cromatina/metabolismo , Ácidos e Sais Biliares/metabolismo , Ligantes , Fatores de Transcrição/metabolismo , Fígado/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
5.
Environ Toxicol ; 39(2): 708-722, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37665156

RESUMO

BACKGROUND: Gallbladder cancer (GBC), a highly malignant gastrointestinal tumor, lacks effective therapies. Foxhead box A2 (FOXA2) is a tumor suppressor that is poorly expressed in various human malignancies. This study aimed to ascertain FOXA2 expression in GBC and its relevance to tumor metastasis, and to elucidate its regulatory mechanism with epithelial-mesenchymal transition (EMT) as an entry point, in the hope of providing a potential therapeutic target for GBC. METHODS: FOXA2 expression in GBC tissues was first detected using immunohistochemistry (IHC), followed by correlation analysis with clinicopathological characteristics and survival prognosis. Subsequently, the effects of FOXA2 on GBC cell migration and invasion, as well as EMT induction, were evaluated by scratch, Transwell, RT-PCR, and Western blot assays, together with animal experimentation. Ultimately, mRNA sequencing was carried out to identify the key downstream target genes of FOXA2 in controlling the EMT process in GBC cells, and dual-luciferase reporter and chromatin immunoprecipitation assays were used to determine its regulatory mechanism. RESULTS: FOXA2 was underexpressed in GBC tissues and inversely correlated with tumor node metastasis stage, lymph node metastasis, and poor patient prognosis. FOXA2 exerts suppressive effects on EMT and metastasis of GBC in vivo and in vitro. FOXA2 can impede GBC cell migratory and invasive functions and EMT by positively mediating serine protein kinase inhibitor B5 (SERPINB5) expression. CONCLUSION: FOXA2 directly binds to the SERPINB5 promoter region to stimulate its transcription, thereby modulating the migration and invasion behaviors of GBC cells as well as the EMT process, which might be an effective therapeutic target against GBC.


Assuntos
Neoplasias da Vesícula Biliar , Animais , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Regulação Neoplásica da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
6.
J Biol Chem ; 300(1): 105535, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072043

RESUMO

Renal cell carcinoma (RCC) is a frequent malignancy of the urinary system with high mortality and morbidity. However, the molecular mechanisms underlying RCC progression are still largely unknown. In this study, we identified FOXA2, a pioneer transcription factor, as a driver oncogene for RCC. We show that FOXA2 was commonly upregulated in human RCC samples and promoted RCC proliferation, as evidenced by assays of cell viability, colony formation, migratory and invasive capabilities, and stemness properties. Mechanistically, we found that FOXA2 promoted RCC cell proliferation by transcriptionally activating HIF2α expression in vitro and in vivo. Furthermore, we found that FOXA2 could interact with VHL (von Hippel‒Lindau), which ubiquitinated FOXA2 and controlled its protein stability in RCC cells. We showed that mutation of lysine at position 264 to arginine in FOXA2 could mostly abrogate its ubiquitination, augment its activation effect on HIF2α expression, and promote RCC proliferation in vitro and RCC progression in vivo. Importantly, elevated expression of FOXA2 in patients with RCC positively correlated with the expression of HIF2α and was associated with shorter overall and disease-free survival. Together, these findings reveal a novel role of FOXA2 in RCC development and provide insights into the underlying molecular mechanisms of FOXA2-driven pathological processes in RCC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Carcinoma de Células Renais , Fator 3-beta Nuclear de Hepatócito , Neoplasias Renais , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Fatores de Transcrição/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Progressão da Doença
7.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119655, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38135007

RESUMO

Farnesoid X receptor (FXR) is a nuclear ligand-activated receptor of bile acids that plays a role in the modulation of insulin content. However, the underlying molecular mechanisms remain unclear. Forkhead box a2 (Foxa2) is an important nuclear transcription factor in pancreatic ß-cells and is involved in ß-cell function. We aimed to explore the signaling mechanism downstream of FXR to regulate insulin content and underscore its association with Foxa2 and insulin gene (Ins) transcription. All experiments were conducted on FXR transgenic mice, INS-1 823/13 cells, and diabetic Goto-Kakizaki (GK) rats undergoing sham or Roux-en-Y gastric bypass (RYGB) surgery. Islets from FXR knockout mice and INS-1823/13 cells with FXR knockdown exhibited substantially lower insulin levels than that of controls. This was accompanied by decreased Foxa2 expression and Ins transcription. Conversely, FXR overexpression increased insulin content, concomitant with enhanced Foxa2 expression and Ins transcription in INS-1 823/13 cells. Moreover, FXR knockdown reduced FXR recruitment and H3K27 trimethylation in the Foxa2 promoter. Importantly, Foxa2 overexpression abrogated the adverse effects of FXR knockdown on Ins transcription and insulin content in INS-1 823/13 cells. Notably, RYGB surgery led to improved insulin content in diabetic GK rats, which was accompanied by upregulated FXR and Foxa2 expression and Ins transcription. Collectively, these data suggest that Foxa2 serves as the target gene of FXR in ß-cells and mediates FXR-enhanced Ins transcription. Additionally, the upregulated FXR/Foxa2 signaling cascade could contribute to the enhanced insulin content in diabetic GK rats after RYGB.


Assuntos
Diabetes Mellitus , Insulina , Camundongos , Ratos , Animais , Insulina/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
8.
Biochim Biophys Acta Gen Subj ; 1868(1): 130500, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914145

RESUMO

BACKGROUND: Excessive inflammation is the main cause of treatment failure in neonatal pneumonia (NP). CCCTC-binding factor (CTCF) represents an important node in various inflammatory diseases. In the present study, we tried to clarify the function and underlying molecular mechanism of CTCF on an in vitro cellular model of NP, which was generated by simulating the human lung fibroblast cell line WI-38 with lipopolysaccharide (LPS). METHODS: The SUMOylation level and protein interaction were verified by Co-immunoprecipitation assay. Cell viability was measured by Cell Counting Kit-8 assay. Inflammatory factors were examined by Enzyme-linked immunosorbent assay. Cell apoptosis was evaluated by TUNEL assay. The binding activity of CTCF to target promoter was tested by chromatin immunoprecipitation and luciferase reporter assay. RESULTS: LPS treatment restrained cell viability, promoted the production of inflammatory factors, and enhanced cell apoptosis. CTCF overexpression played anti-inflammatory and anti-apoptotic roles. Furthermore, CTCF was modified by SUMOylation with small ubiquitin-like modifier protein 1 (SUMO1). Interfering with sumo-specific protease 1 (SENP1) facilitated CTCF SUMOylation and protein stability, thus suppressing LPS-evoked inflammatory and apoptotic injuries. Moreover, CTCF could bind to the forkhead box protein A2 (FOXA2) promoter region to promote FOXA2 expression. The anti-inflammatory and anti-apoptotic roles of CTCF are associated with FOXA2 activation. In addition, SENP1 knockdown increased FOXA2 expression by enhancing the abundance and binding ability of CTCF. CONCLUSIONS: SUMOylation of CTCF by SENP1 knockdown enhanced its protein stability and binding ability and it further alleviated LPS-evoked inflammatory injury in human lung fibroblasts by positively regulating FOXA2 transcription.


Assuntos
Lipopolissacarídeos , Peptídeo Hidrolases , Recém-Nascido , Humanos , Peptídeo Hidrolases/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Sumoilação , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Anti-Inflamatórios , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
9.
PeerJ ; 11: e16466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084145

RESUMO

Objective: Forkhead box a2 (Foxa2) is proven to be an insulin-sensitive transcriptional regulator and affects hepatic steatosis. This study aims to investigate the mechanism by which Foxa2 affects nonalcoholic fatty liver disease (NAFLD). Methods: Animal and cellular models of NAFLD were constructed using high-fat diet (HFD) feeding and oleic acid (OA) stimulation, respectively. NAFLD mice received tail vein injections of either an overexpressing negative control (oe-NC) or Foxa2 (oe-Foxa2) for four weeks. HepG2 cells were transfected with oe-NC and oe-Foxa2 for 48 h before OA stimulation. Histological changes and lipid accumulation were assessed using hematoxylin-eosin staining and oil red O staining, respectively. Expression of Foxa2, NF-κB/IKK pathway proteins, lipid synthesis proteins, and fatty acid ß-oxidation protein in HFD mice and OA-induced HepG2 cells was detected using western blot. Results: Foxa2 expression was downregulated in HFD mice and OA-induced HepG2 cells. Foxa2 overexpression attenuated lipid accumulation and liver injury, and reduced the levels of aspartate aminotransferase, alanine aminotransferase, total cholesterol, or triglyceride in HFD mice and OA-induced HepG2 cells. Moreover, Foxa2 overexpression decreased the expression of lipid synthesis proteins and increased fatty acid ß-oxidation protein expression in the liver tissues. Furthermore, overexpression of Foxa2 downregulated the expression of p-NF-κB/NF-κB and p-IKK/IKK in OA-induced HepG2 cells. Additionally, lipopolysaccharide (NF-κB/IKK pathway activator) administration reversed the downregulation of lipid synthesis proteins and the upregulation of fatty acid ß-oxidation protein. Conclusion: Foxa2 expression is downregulated in NAFLD. Foxa2 ameliorated hepatic steatosis and inhibited the activation of the NF-κB/IKK signaling pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , NF-kappa B/metabolismo , Transdução de Sinais , Ácido Oleico/farmacologia , Fator 3-beta Nuclear de Hepatócito/genética
10.
Elife ; 122023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861292

RESUMO

Millions suffer from incurable lung diseases, and the donor lung shortage hampers organ transplants. Generating the whole organ in conjunction with the thymus is a significant milestone for organ transplantation because the thymus is the central organ to educate immune cells. Using lineage-tracing mice and human pluripotent stem cell (PSC)-derived lung-directed differentiation, we revealed that gastrulating Foxa2 lineage contributed to both lung mesenchyme and epithelium formation. Interestingly, Foxa2 lineage-derived cells in the lung mesenchyme progressively increased and occupied more than half of the mesenchyme niche, including endothelial cells, during lung development. Foxa2 promoter-driven, conditional Fgfr2 gene depletion caused the lung and thymus agenesis phenotype in mice. Wild-type donor mouse PSCs injected into their blastocysts rescued this phenotype by complementing the Fgfr2-defective niche in the lung epithelium and mesenchyme and thymic epithelium. Donor cell is shown to replace the entire lung epithelial and robust mesenchymal niche during lung development, efficiently complementing the nearly entire lung niche. Importantly, those mice survived until adulthood with normal lung function. These results suggest that our Foxa2 lineage-based model is unique for the progressive mobilization of donor cells into both epithelial and mesenchymal lung niches and thymus generation, which can provide critical insights into studying lung transplantation post-transplantation shortly.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes , Camundongos , Humanos , Animais , Adulto , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Pulmão , Blastocisto/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
11.
Adv Sci (Weinh) ; 10(35): e2304521, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37875418

RESUMO

The forkhead box transcription factor A2 (FOXA2) is a transcription factor and plays a key role in embryonic development, metabolism homeostasis and tumor cell proliferation; however, its regulatory potential in CRC is not fully understood. Here, it is found that FOXA2 expression is markedly up-regulated in tumor samples of CRC patients as compared with the normal tissues, which is closely associated with the worse survival in patients with CRC. Notably, a positive correlation between FOXA2 and nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) gene expression is observed in CRC patients. Mechanistically, FOXA2 depletion weakens the activation of Nrf2 pathway and decreases GPX4 level in CRC cells, thereby leading to ferroptosis, which is further supported by bioinformatic analysis. More intriguingly, the E3 ubiquitin ligase tripartite motif containing 36 (TRIM36) is identified as a key suppressor of FOXA2, and it is observed that TRIM36 can directly interact with FOXA2 and induce its K48-linked polyubiquitination, resulting in FOXA2 protein degradation in vitro. Taken together, all the studies demonstrate that FOXA2 mediated by TRIM36 promotes CRC progression by inhibiting the Nrf2/GPX4 ferroptosis signaling pathway, thus providing a new therapeutic target for CRC treatment.


Assuntos
Neoplasias Colorretais , Ferroptose , Feminino , Gravidez , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fator 2 Relacionado a NF-E2/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Fator 3-beta Nuclear de Hepatócito/genética
12.
Cell Commun Signal ; 21(1): 229, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670346

RESUMO

BACKGROUND: Our recent studies have demonstrated the crucial involvement of FOXA2 in the development of human pancreas. Reduction of FOXA2 expression during the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic islets has been found to reduce α-and ß-cell masses. However, the extent to which such changes are linked to alterations in the expression profile of long non-coding RNAs (lncRNAs) remains unraveled. METHODS: Here, we employed our recently established FOXA2-deficient iPSCs (FOXA2-/- iPSCs) to investigate changes in lncRNA profiles and their correlation with dysregulated mRNAs during the pancreatic progenitor (PP) and pancreatic islet stages. Furthermore, we constructed co-expression networks linking significantly downregulated lncRNAs with differentially expressed pancreatic mRNAs. RESULTS: Our results showed that 442 lncRNAs were downregulated, and 114 lncRNAs were upregulated in PPs lacking FOXA2 compared to controls. Similarly, 177 lncRNAs were downregulated, and 59 lncRNAs were upregulated in islet cells lacking FOXA2 compared to controls. At both stages, we observed a strong correlation between lncRNAs and several crucial pancreatic genes and TFs during pancreatic differentiation. Correlation analysis revealed 12 DE-lncRNAs that strongly correlated with key downregulated pancreatic genes in both PPs and islet cell stages. Selected DE-lncRNAs were validated using RT-qPCR. CONCLUSIONS: Our data indicate that the observed defects in pancreatic islet development due to the FOXA2 loss is associated with significant alterations in the expression profile of lncRNAs. Therefore, our findings provide novel insights into the role of lncRNA and mRNA networks in regulating pancreatic islet development, which warrants further investigations. Video Abstract.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , RNA Longo não Codificante , Humanos , Pâncreas , Diferenciação Celular , RNA Mensageiro , Fator 3-beta Nuclear de Hepatócito
13.
Adv Sci (Weinh) ; 10(32): e2303884, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37679064

RESUMO

Directed differentiation of serotonin neurons (SNs) from human pluripotent stem cells (hPSCs) provides a valuable tool for uncovering the mechanism of human SN development and the associated neuropsychiatric disorders. Previous studies report that FOXA2 is expressed by serotonergic progenitors (SNPs) and functioned as a serotonergic fate determinant in mouse. However, in the routine differentiation experiments, it is accidentally found that less SNs and more non-neuronal cells are obtained from SNP stage with higher percentage of FOXA2-positive cells. This phenomenon prompted them to question the role of FOXA2 as an intrinsic fate determinant for human SN differentiation. Herein, by direct differentiation of engineered hPSCs into SNs, it is found that the SNs are not derived from FOXA2-lineage cells; FOXA2-knockout hPSCs can still differentiate into mature and functional SNs with typical serotonergic identity; FOXA2 overexpression suppresses the SN differentiation, indicating that FOXA2 is not intrinsically required for human SN differentiation. Furthermore, repressing FOXA2 expression by retinoic acid (RA) and dynamically modulating Sonic Hedgehog (SHH) signaling pathway promotes human SN differentiation. This study uncovers the role of FOXA2 in human SN development and improves the differentiation efficiency of hPSCs into SNs by repressing FOXA2 expression.


Assuntos
Células-Tronco Pluripotentes , Serotonina , Humanos , Camundongos , Animais , Serotonina/metabolismo , Proteínas Hedgehog/metabolismo , Neurônios/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
14.
Genomics ; 115(5): 110693, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532089

RESUMO

OBJECTIVE: This research discussed the specific mechanism by which PIAS1 affects acute pancreatitis (AP). METHODS: PIAS1, Foxa2, and FTO expression was assessed in Cerulein-induced AR42J cells and mice. Loss- and gain-of-function assays and Cerulein induction were conducted in AR42J cells and mice for analysis. The relationship among PIAS1, Foxa2, and FTO was tested. Cell experiments run in triplicate, and eight mice for each animal group. RESULTS: Cerulein-induced AP cells and mice had low PIAS1 and Foxa2 and high FTO. Cerulein induced pancreatic injury in mice and inflammation and oxidative stress in pancreatic tissues, which could be reversed by PIAS1 or Foxa2 upregulation or FTO downregulation. PIAS1 elevated SUMO modification of Foxa2 to repress FTO transcription. FTO upregulation neutralized the ameliorative effects of PIAS1 or Foxa2 upregulation on Cerulein-induced AR42J cell injury, inflammation, and oxidative stress. CONCLUSION: PIAS1 upregulation diminished FTO transcription by increasing Foxa2 SUMO modification, thereby ameliorating Cerulein-induced AP.


Assuntos
Pancreatite , Animais , Camundongos , Doença Aguda , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Ceruletídeo/metabolismo , Ceruletídeo/toxicidade , Regulação para Baixo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Inflamação , Pancreatite/induzido quimicamente , Pancreatite/genética , Sumoilação , Regulação para Cima
15.
Cell Rep ; 42(8): 112939, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37566546

RESUMO

Mammalian sirtuin 6 (SIRT6) regulates a spectrum of vital biological processes and has long been implicated in the progression of cancer. However, the mechanisms underlying the regulation of SIRT6 in tumorigenesis remain elusive. Here, we report that the tumor-suppressive function of SIRT6 in non-small cell lung cancer (NSCLC) is regulated by acetylation. Specifically, males absent on the first (MOF) acetylates SIRT6 at K128, K160, and K267, resulting in a decreased deacetylase activity of SIRT6 and attenuated SIRT6 tumor-suppressive function in NSCLC. Mechanistically, MOF-mediated SIRT6 acetylation hinders the interaction between SIRT6 and transcriptional factor FOXA2, which in turn leads to the transcriptional activation of ZEB2, thus promoting NSCLC progression. Collectively, these data indicate an acetylation-dependent mechanism that modulates SIRT6 tumor-suppressive function in NSCLC. Our findings suggest that the MOF-SIRT6-ZEB2 axis may represent a promising therapeutic target for the management of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Sirtuínas , Humanos , Masculino , Acetilação , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Regulação da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Sirtuínas/genética , Sirtuínas/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
16.
Cell Rep ; 42(7): 112751, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405921

RESUMO

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a cancer syndrome caused by inactivating germline mutations in fumarate hydratase (FH) and subsequent accumulation of fumarate. Fumarate accumulation leads to profound epigenetic changes and the activation of an anti-oxidant response via nuclear translocation of the transcription factor NRF2. The extent to which chromatin remodeling shapes this anti-oxidant response is currently unknown. Here, we explored the effects of FH loss on the chromatin landscape to identify transcription factor networks involved in the remodeled chromatin landscape of FH-deficient cells. We identify FOXA2 as a key transcription factor that regulates anti-oxidant response genes and subsequent metabolic rewiring cooperating without direct interaction with the anti-oxidant regulator NRF2. The identification of FOXA2 as an anti-oxidant regulator provides additional insights into the molecular mechanisms behind cell responses to fumarate accumulation and potentially provides further avenues for therapeutic intervention for HLRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Síndromes Neoplásicas Hereditárias , Neoplasias Cutâneas , Neoplasias Uterinas , Feminino , Humanos , Fumarato Hidratase/genética , Antioxidantes , Fator 2 Relacionado a NF-E2/genética , Leiomiomatose/genética , Neoplasias Uterinas/genética , Neoplasias Cutâneas/genética , Síndromes Neoplásicas Hereditárias/genética , Cromatina , Neoplasias Renais/genética , Carcinoma de Células Renais/genética , Fator 3-beta Nuclear de Hepatócito/genética
17.
Sci Adv ; 9(24): eadf6927, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37315133

RESUMO

Correct notochord and neural tube (NT) formation is crucial to the development of the central nervous system and midline structures. Integrated biochemical and biophysical signaling controls embryonic growth and patterning; however, the underlying mechanisms remain poorly understood. Here, we took the opportunities of marked morphological changes during notochord and NT formation and identified both necessary and sufficient roles of Yap, a key mechanosensor and mechanotransducer, in biochemical signaling activation during formation of notochord and floor plate, the ventral signaling centers that pattern the dorsal-ventral axis of NT and the surrounding tissues. We showed that Yap activation by a gradient of mechanical stress and tissue stiffness in the notochord and ventral NT induces FoxA2 and Shh expression. Hedgehog signaling activation rescued NT patterning defects caused by Yap deficiency, but not notochord formation. Therefore, mechanotransduction via Yap activation acts in feedforward mechanisms to induce FoxA2 expression for notochord formation and activate Shh expression for floor plate induction by synergistically interacting with FoxA2.


Assuntos
Proteínas Hedgehog , Fator 3-beta Nuclear de Hepatócito , Mecanotransdução Celular , Proteínas de Sinalização YAP , Sistema Nervoso Central/embriologia , Desenvolvimento Embrionário , Tubo Neural/embriologia
18.
Histopathology ; 83(3): 477-481, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37265221

RESUMO

AIMS: Testicular germ cell tumours are the most common solid malignancies in young men of age 14-44 years. It is generally accepted that both seminomas and non-seminomas arise from a common precursor, the germ cell neoplasia in-situ, which itself is the result of a defective (primordial) germ cell development. The stem cell-like population of the non-seminomas, the embryonal carcinoma, is capable of the differentiation of all three germ layers (teratomas) and extra-embryonic tissues (yolk-sac tumours, choriocarcioma) into cells. In contrast, seminomas are thought to have a limited differentiation potential. Nevertheless, several studies have highlighted their ability to undergo reprogramming to an embryonal carcinoma or differentiation into other non-seminomatous entities. Here, we demonstrate that in approximately 5% of seminomas, the yolk-sac tumour driver gene FOXA2 is detectable at the protein level, indicative of an occult yolk-sac tumour subpopulation that putatively arose from seminoma cells, as the presence of other GCT entities could be excluded. The presence of these subpopulations might render the tumour more aggressive and argue for an adjustment of the therapeutic concept. We used our data to update the model of germ cell tumour pathogenesis, especially regarding the developmental potential of seminomas. Additionally, we suggest to include detection of FOXA2 into standard routine diagnosis of seminomas.


Assuntos
Carcinoma Embrionário , Neoplasias Embrionárias de Células Germinativas , Seminoma , Neoplasias Testiculares , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Seminoma/patologia , Neoplasias Testiculares/patologia , Diferenciação Celular , Fator 3-beta Nuclear de Hepatócito/genética
19.
Cancer Res ; 83(9): 1443-1458, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37067057

RESUMO

The endoderm-lineage transcription factor FOXA2 has been shown to inhibit lung tumorigenesis in in vitro and xenograft studies using lung cancer cell lines. However, FOXA2 expression in primary lung tumors does not correlate with an improved patient survival rate, and the functional role of FOXA2 in primary lung tumors remains elusive. To understand the role of FOXA2 in primary lung tumors in vivo, here, we conditionally induced the expression of FOXA2 along with either of the two major lung cancer oncogenes, EGFRL858R or KRASG12D, in the lung epithelium of transgenic mice. Notably, FOXA2 suppressed autochthonous lung tumor development driven by EGFRL858R, whereas FOXA2 promoted tumor growth driven by KRASG12D. Importantly, FOXA2 expression along with KRASG12D produced invasive mucinous adenocarcinoma (IMA) of the lung, a fatal mucus-producing lung cancer comprising approximately 5% of human lung cancer cases. In the mouse model in vivo and human lung cancer cells in vitro, FOXA2 activated a gene regulatory network involved in the key mucous transcription factor SPDEF and upregulated MUC5AC, whose expression is critical for inducing IMA. Coexpression of FOXA2 with mutant KRAS synergistically induced MUC5AC expression compared with that induced by FOXA2 alone. ChIP-seq combined with CRISPR interference indicated that FOXA2 bound directly to the enhancer region of MUC5AC and induced the H3K27ac enhancer mark. Furthermore, FOXA2 was found to be highly expressed in primary tumors of human IMA. Collectively, this study reveals that FOXA2 is not only a biomarker but also a driver for IMA in the presence of a KRAS mutation. SIGNIFICANCE: FOXA2 expression combined with mutant KRAS drives invasive mucinous adenocarcinoma of the lung by synergistically promoting a mucous transcriptional program, suggesting strategies for targeting this lung cancer type that lacks effective therapies.


Assuntos
Adenocarcinoma Mucinoso , Fator 3-beta Nuclear de Hepatócito , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Camundongos , Adenocarcinoma Mucinoso/genética , Fator 3-beta Nuclear de Hepatócito/genética , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos Transgênicos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/metabolismo
20.
Clin Exp Pharmacol Physiol ; 50(7): 561-572, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36946190

RESUMO

Aerobic glycolysis is critical for the energy metabolism of cancer cells. This study focuses on the regulation of forkhead box A2 (FOXA2) on pyruvate kinase M2 (PKM2) and their effects on the glycolytic activity and malignant phenotype of thyroid carcinoma (THCA) cells. By analysing four Gene Expression Omnibus datasets and querying bioinformatics systems, we obtained FOXA2 as a poorly expressed transcription factor in THCA. Later, we validated decreased mRNA and protein levels of FOXA2 in THCA cells by quantitative polymerase chain reaction and western blot assays. FOXA2 upregulation in THCA cells suppressed the glucose uptake and lactate production, and it reduced the extracellular acidification rate, but increased the oxygen consumption rate of cells. Meanwhile, the FOXA2 overexpression blocked the proliferation and mobility, and the tumourigenic activity of cancer cells. The chromatin immunoprecipitation and luciferase assays showed that FOXA2 bound to PKM2 promoter and suppressed the transcription of PKM2, which was highly expressed in THCA cells. Further upregulation of PKM2 elevated the ß-catenin, c-Myc and cyclin D1 levels and restored the glycolytic activity as well as the malignant properties of cancer cells. Collectively, this work reveals that FOXA2 suppresses aerobic glycolysis and progression of THCA by blocking PKM2 transcription and inactivating the Wnt/ß-catenin pathway.


Assuntos
Neoplasias da Glândula Tireoide , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Regulação para Cima , Neoplasias da Glândula Tireoide/genética , Glicólise/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...